3.11.89 \(\int \frac {x^2}{(-2+3 x^2) (-1+3 x^2)^{3/4}} \, dx\) [1089]

Optimal. Leaf size=61 \[ \frac {\tan ^{-1}\left (\frac {\sqrt {\frac {3}{2}} x}{\sqrt [4]{-1+3 x^2}}\right )}{3 \sqrt {6}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {\frac {3}{2}} x}{\sqrt [4]{-1+3 x^2}}\right )}{3 \sqrt {6}} \]

[Out]

1/18*arctan(1/2*x*6^(1/2)/(3*x^2-1)^(1/4))*6^(1/2)-1/18*arctanh(1/2*x*6^(1/2)/(3*x^2-1)^(1/4))*6^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 61, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.042, Rules used = {453} \begin {gather*} \frac {\text {ArcTan}\left (\frac {\sqrt {\frac {3}{2}} x}{\sqrt [4]{3 x^2-1}}\right )}{3 \sqrt {6}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {\frac {3}{2}} x}{\sqrt [4]{3 x^2-1}}\right )}{3 \sqrt {6}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/((-2 + 3*x^2)*(-1 + 3*x^2)^(3/4)),x]

[Out]

ArcTan[(Sqrt[3/2]*x)/(-1 + 3*x^2)^(1/4)]/(3*Sqrt[6]) - ArcTanh[(Sqrt[3/2]*x)/(-1 + 3*x^2)^(1/4)]/(3*Sqrt[6])

Rule 453

Int[(x_)^2/(((a_) + (b_.)*(x_)^2)^(3/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Simp[(-b/(Sqrt[2]*a*d*Rt[-b^2/a,
4]^3))*ArcTan[(Rt[-b^2/a, 4]*x)/(Sqrt[2]*(a + b*x^2)^(1/4))], x] + Simp[(b/(Sqrt[2]*a*d*Rt[-b^2/a, 4]^3))*ArcT
anh[(Rt[-b^2/a, 4]*x)/(Sqrt[2]*(a + b*x^2)^(1/4))], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d, 0] && Neg
Q[b^2/a]

Rubi steps

\begin {align*} \int \frac {x^2}{\left (-2+3 x^2\right ) \left (-1+3 x^2\right )^{3/4}} \, dx &=\frac {\tan ^{-1}\left (\frac {\sqrt {\frac {3}{2}} x}{\sqrt [4]{-1+3 x^2}}\right )}{3 \sqrt {6}}-\frac {\tanh ^{-1}\left (\frac {\sqrt {\frac {3}{2}} x}{\sqrt [4]{-1+3 x^2}}\right )}{3 \sqrt {6}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 54, normalized size = 0.89 \begin {gather*} \frac {\tan ^{-1}\left (\frac {\sqrt {\frac {3}{2}} x}{\sqrt [4]{-1+3 x^2}}\right )-\tanh ^{-1}\left (\frac {\sqrt {\frac {3}{2}} x}{\sqrt [4]{-1+3 x^2}}\right )}{3 \sqrt {6}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/((-2 + 3*x^2)*(-1 + 3*x^2)^(3/4)),x]

[Out]

(ArcTan[(Sqrt[3/2]*x)/(-1 + 3*x^2)^(1/4)] - ArcTanh[(Sqrt[3/2]*x)/(-1 + 3*x^2)^(1/4)])/(3*Sqrt[6])

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.00, size = 138, normalized size = 2.26

method result size
trager \(\frac {\RootOf \left (\textit {\_Z}^{2}-6\right ) \ln \left (-\frac {\RootOf \left (\textit {\_Z}^{2}-6\right ) \left (3 x^{2}-1\right )^{\frac {3}{4}}-3 \sqrt {3 x^{2}-1}\, x +\RootOf \left (\textit {\_Z}^{2}-6\right ) \left (3 x^{2}-1\right )^{\frac {1}{4}}-3 x}{3 x^{2}-2}\right )}{18}+\frac {\RootOf \left (\textit {\_Z}^{2}+6\right ) \ln \left (\frac {\RootOf \left (\textit {\_Z}^{2}+6\right ) \left (3 x^{2}-1\right )^{\frac {3}{4}}+3 \sqrt {3 x^{2}-1}\, x -\RootOf \left (\textit {\_Z}^{2}+6\right ) \left (3 x^{2}-1\right )^{\frac {1}{4}}-3 x}{3 x^{2}-2}\right )}{18}\) \(138\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(3*x^2-2)/(3*x^2-1)^(3/4),x,method=_RETURNVERBOSE)

[Out]

1/18*RootOf(_Z^2-6)*ln(-(RootOf(_Z^2-6)*(3*x^2-1)^(3/4)-3*(3*x^2-1)^(1/2)*x+RootOf(_Z^2-6)*(3*x^2-1)^(1/4)-3*x
)/(3*x^2-2))+1/18*RootOf(_Z^2+6)*ln((RootOf(_Z^2+6)*(3*x^2-1)^(3/4)+3*(3*x^2-1)^(1/2)*x-RootOf(_Z^2+6)*(3*x^2-
1)^(1/4)-3*x)/(3*x^2-2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(3*x^2-2)/(3*x^2-1)^(3/4),x, algorithm="maxima")

[Out]

integrate(x^2/((3*x^2 - 1)^(3/4)*(3*x^2 - 2)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 104 vs. \(2 (43) = 86\).
time = 1.17, size = 104, normalized size = 1.70 \begin {gather*} -\frac {1}{18} \, \sqrt {6} \arctan \left (\frac {\sqrt {6} {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}}}{3 \, x}\right ) + \frac {1}{36} \, \sqrt {6} \log \left (-\frac {9 \, x^{4} - 6 \, \sqrt {6} {\left (3 \, x^{2} - 1\right )}^{\frac {1}{4}} x^{3} + 12 \, \sqrt {3 \, x^{2} - 1} x^{2} - 4 \, \sqrt {6} {\left (3 \, x^{2} - 1\right )}^{\frac {3}{4}} x + 12 \, x^{2} - 4}{9 \, x^{4} - 12 \, x^{2} + 4}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(3*x^2-2)/(3*x^2-1)^(3/4),x, algorithm="fricas")

[Out]

-1/18*sqrt(6)*arctan(1/3*sqrt(6)*(3*x^2 - 1)^(1/4)/x) + 1/36*sqrt(6)*log(-(9*x^4 - 6*sqrt(6)*(3*x^2 - 1)^(1/4)
*x^3 + 12*sqrt(3*x^2 - 1)*x^2 - 4*sqrt(6)*(3*x^2 - 1)^(3/4)*x + 12*x^2 - 4)/(9*x^4 - 12*x^2 + 4))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x^{2}}{\left (3 x^{2} - 2\right ) \left (3 x^{2} - 1\right )^{\frac {3}{4}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(3*x**2-2)/(3*x**2-1)**(3/4),x)

[Out]

Integral(x**2/((3*x**2 - 2)*(3*x**2 - 1)**(3/4)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(3*x^2-2)/(3*x^2-1)^(3/4),x, algorithm="giac")

[Out]

integrate(x^2/((3*x^2 - 1)^(3/4)*(3*x^2 - 2)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {x^2}{{\left (3\,x^2-1\right )}^{3/4}\,\left (3\,x^2-2\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/((3*x^2 - 1)^(3/4)*(3*x^2 - 2)),x)

[Out]

int(x^2/((3*x^2 - 1)^(3/4)*(3*x^2 - 2)), x)

________________________________________________________________________________________